

36V General-Purpose Industry Comparators

1 Features

Wide Supply: 3.0V to 36V

Faster Response Time: 1.3us (typical)

Low Offset Voltage: ±2mV (typical)

Low Input Bias Current: 25nA(typical)

Large Voltage Gain: 100 dB (typical)

· Open Collector Output

 Input Common-Mode Voltage Range Includes Ground

 Differential Input Voltage Range Equal To Power Supply

 Extended Temperature Range: -40°C to +125°C

2 Applications

- Industrial Application
- Solar Inverter
- White Goods
- Battery Management System
- · Medical Equipment

3 Description

The GD30CP2903/2901 are dual and quad channel voltage comparators with very low input offset voltage specification. They are designed to operate from a single power supply over a wide range of voltages, however operation from split power supplies is also possible. They offer low power supply current independent of the magnitude of the power supply voltage.

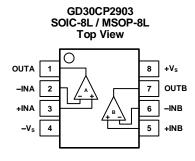
These comparators family are designed to directly interface with TTL and CMOS. When operating from both plus and minus power supplies, the comparators could directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

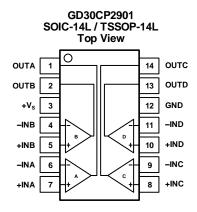
The GD30CP2903(dual) is offered in SOIC-8L and MSOP-8L packages, the quad of GD30CP2901 is offered in SOIC-14L and TSSOP-14L packages.

Device Information¹

PART NUMBER	PACKAGE	BODY SIZE (NOM)
GD30CP2903	SOIC-8L	4.90mm x 3.92mm
GD30CP2903	MSOP-8L	3.00mm x 3.00mm
CD20CD2004	SOIC-14L	8.73mm x 3.95mm
GD30CP2901	TSSOP-14L	4.96mm x 4.40mm

^{1.} For packaging details, see *Package Information* section.


Table of Contents


1	Feat	tures	
2	App	lications	1
3	Desc	cription	1
Tab		Contents	
4	Devi	ice Overview	3
	4.1	Pinout and Pin Assignment	3
	4.2	Pin Description	3
5	Para	ameter Information	4
	5.1	Absolute Maximum Ratings	4
	5.2	Recommended Operation Conditions	4
	5.3	Electrical Sensitivity	4
	5.4	Thermal Characteristics	4
	5.5	Electrical Characteristics	5
	5.6	Typical Characteristics	6
6	Pack	kage Information	8
	6.1	Outline Dimensions	8
	6.2	Recommended Land Pattern	16
7	Orde	ering Information	20
R	Revi	ision History	21

4 Device Overview

4.1 Pinout and Pin Assignment

4.2 Pin Description

NAME	PIN TYPE ¹	FUNCTION
-IN	I	Inverting input of the comparator. The voltage range is from ($V_{S-}V$) to (V_{S+} + 20 V).
+IN	I	Non-inverting input of the comparator. This pin has the same voltage range as –IN.
+Vs	Р	Positive power supply. The voltage is from 3.0V to 36V. Split supplies are possible as long as the voltage between V_{S+} and V_{S-} is from 3.0V to 36V.
-Vs	Р	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V_{S^+} and V_{S^-} is from 3.0V to 36V.
OUT	0	Comparator output.

^{1.} I = Input, O = Output, P = Power.

5 Parameter Information

5.1 Absolute Maximum Ratings

Exceeding the operating temperature range (unless otherwise noted)1

SYMBOL	PARAMETER	MIN	MAX	UNIT
V _{S+} to V _{S-}	Supply Voltage		40	٧
Vı	Differential Input Voltage	-36	36	٧
l _l	Signal Input Voltage Range		40	٧
	Output Short-Circuit	Conti	nuous	S
TJ	Junction Temperature		150	°C
TA	Operate Temperature Range	-40	125	°C
T _{stg}	Storage Temperature Range	-65	+150	°C
	Lead Temperature Range (Soldering 10 sec)		260	°C

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note
that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating
conditions for extended periods may affect device reliability.

5.2 Recommended Operation Conditions

SYMBOL ^{1,2}	PARAMETER	MIN	TYP MAX	UNIT
Vs	Input supply voltage range	3.0	36	V
Vari	V _S = 5.0V to 36V	-Vs	+Vs - 1.5	V
Vсм	V _S = 5.0V to 36V, T _A = - 40°C to 125°C	-Vs	+V _S -2.0	V
TA	Operating temperature range	-40	125	°C

^{1.} The device is not guaranteed to function outside of its operating conditions.

5.3 Electrical Sensitivity

SYMBOL	CONDITIONS	VALUE	UNIT
$V_{\text{ESD(HBM)}}$	Human-body model (HBM), ANSI/ESDA/JEDEC JS-001-2017 ¹	±500	V
V _{ESD(CDM)}	Charge-device model (CDM), ANSI/ESDA/JEDEC JS-002-2022 ²	±1000	V

^{1.} JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

5.4 Thermal Characteristics

SYMBOL ¹	CONDITIONS	PACKAGE	VALUE	UNIT
Өда		MSOP-8L	171	
	Package Thermal Resistance	SOIC-8L	124.7	°C/W
		TSSOP-14L	135.8	- C/VV
		SOIC-14L	160.9	

^{1.} Thermal characteristics are based on simulation, and meet JEDEC document JESD51-7.

^{2.} JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.5 Electrical Characteristics

 $V_S = 5.0 \text{ V}$ to 36V, $T_A = +25^{\circ}\text{C}$, unless otherwise noted. Boldface limits apply over the specified temperature range.

SYMBOL	. PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
		V _S = 5.0 V to 30 V, V _{OUT} = 1.4 V		±2	±7	
Vos	Input offset voltage	V _S = 5.0 V to 30 V, V _{OUT} = 1.4 V		.45		mV
		T _A = -40 to +125°C			±15	
INPUT B	IAS CURRENT					
	land bir a summer	V _{CM} = 0		-25	-250	^
I _B In	Input bias current	V _{CM} = 0,T _A = -40 to +125°C			-400	nA
		V _{CM} = 0		5	50	
los	Input offset current	$V_{CM} = 0, T_A = -40 \text{ to } +125^{\circ}\text{C}$			200	nA
INPUT V	OLTAGE	L				
		V _S = 5.0 V to 36 V,	-Vs		+Vs - 1.5	
V _{CM}	Common-mode voltage range	V _S = 5.0 V to 36 V	.,			V
		T _A = -40 to +125°C	-Vs		+V _S – 2.0	
VOLTAG	E GAIN					•
^	Large-signal differential-voltage	Vcc = 15 V, Vout = 1 V to 11 V	50	200		\//m\/
A _{VD}	amplification	R _L ≥ 15KΩ	50	200		V/mV
PROPAG	SATION DELAY TIME					
		$R_L = 5.1K\Omega$, $V_{RL} = 5$ V, $C_L = 15$ pF		0.3		
		TTL-Level Input Step		0.3		
T_PD	Propagation delay time	$R_L = 5.1 \text{K}\Omega$, $V_{RL} = 5 \text{ V}$, $C_L = 15 \text{ pF}$				μs
		100mV Input Step With 5mV	1.3			
		Overdrive				
OUTPUT						
		$I_{OL} = 4mA$, $V_{ID} = -1V$		200	400	
Vol	Low output voltage swing	I _{OL} = 4mA, V _{ID} =-1V			700	mV
		T _A = -40 to +125°C			700	
loL	Low-level output current	V _{OL} = 1.5V, V _{ID} = 1V		6	16	mA
		V _{OL} = 5 V, V _{ID} = 1V	0.1	50		nA
Іон	High-level output current	V _{OL} = 30 V, V _{ID} = 1V			1	
		$T_A = -40 \text{ to } +125^{\circ}\text{C}$				μA
POWER	SUPPLY					
Vs	Operating supply voltage	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	3.0		36	V
I.	Quiescent current of	V _S = 5 V		400	1000	μA
IQ	GD30CP2903	Vs = 30 V		650	1750	
	Quiescent current of	V _S = 5 V		850	1990	
IQ	GD30CP2901	Vs = 30 V		1150	2490	μA

^{1.} Guaranteed by design and engineering sample characterization.

5.6 Typical Characteristics

 $V_S = 5V$, $R_L = 5.1k\Omega$ $T_A = +25$ °C, unless otherwise noted.

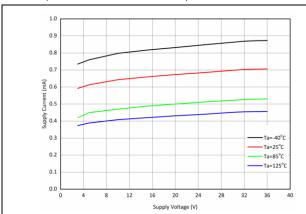


Figure 1. LTA903L Quiescent Current vs. Supply Voltage

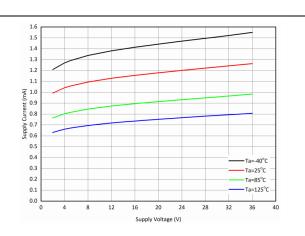


Figure 2. LTA901L Quiescent Current vs. Supply Voltage

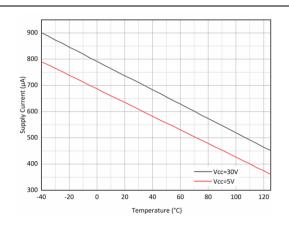


Figure 3. LTA903L Quiescent Current vs.

Temperature

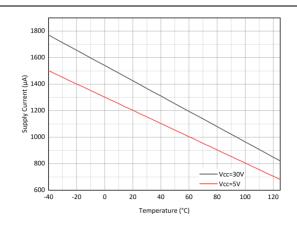


Figure 4. LTA901L Quiescent Current vs.

Temperature

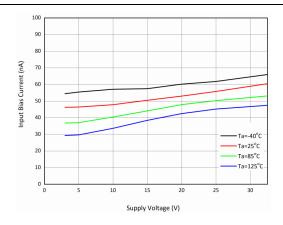


Figure 5. Input Bias Current vs. Supply Voltage

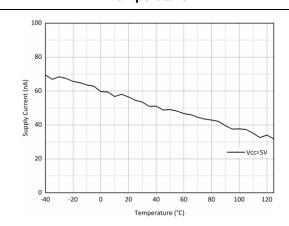


Figure 6. Input Bias Current vs. Supply
Temperature

Typical Characteristics (continued)

 V_{IN} = 5V, V_{OUT} = 3.3V, L = 2.2uH, T_A = 25°C, unless otherwise noted.

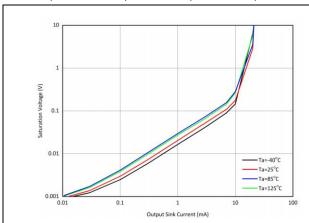


Figure 7. Output Sink Curent vs. Saturaton Voltage

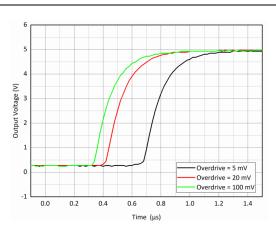
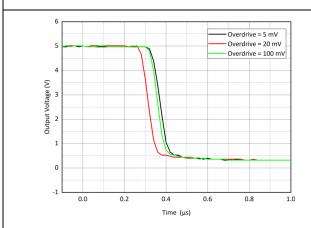
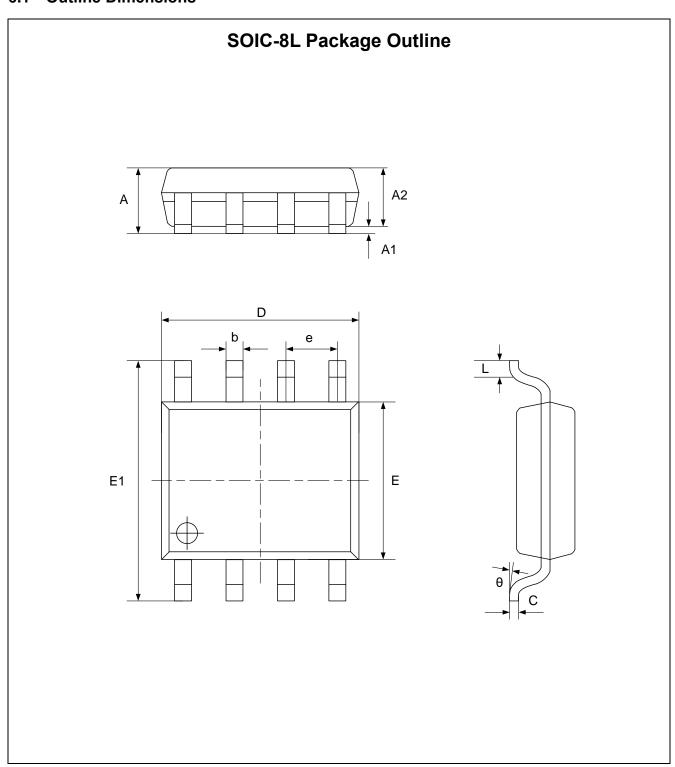


Figure 8. Response Time for Various Over Drivs

Positve Transition




Figure 9. Response Time for Various Over Drivs

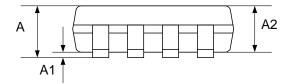
Negative Transition

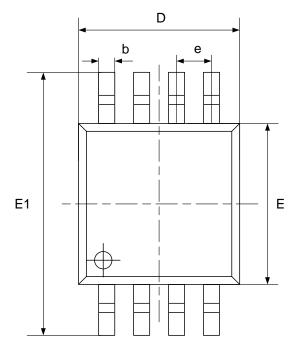
6 Package Information

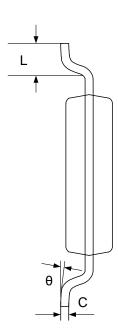
6.1 Outline Dimensions

NOTES: (continued)

1. Refer to the Table 1. SOIC-8L dimensions(mm).



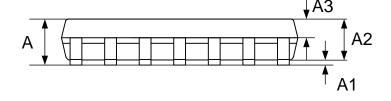

Table 1. SOIC-8L dimensions(mm)

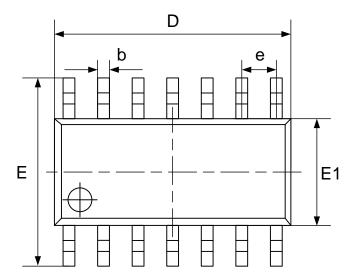

SYMBOL	MIN	NOM	MAX
A	1.370		1.670
A1	0.070		0.170
A2	1.300		1.500
b	0.306		0.506
С		0.203	
D	4.700		5.100
E	3.820		4.020
E1	5.800		6.200
е		1.270	
L	0.450		0.750
θ	0°		8°

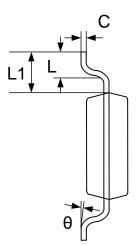
MSOP-8L Package Outline

NOTES: (continued)

1. Refer to the Table 2. MSOP-8L dimensions(mm).




Table 2. MSOP-8L dimensions(mm)


SYMBOL	MIN	NOM	MAX
А	0.800		1.100
A1	0.050		0.150
A2	0.750		0.950
b	0.290		0.380
С	0.150		0.200
D	2.900		3.100
Е	2.900		3.100
E1	4.700		5.100
е		0.650	
L	0.400		0.700
θ	0°		8°

SOIC-14L Package Outline

NOTES: (continued)

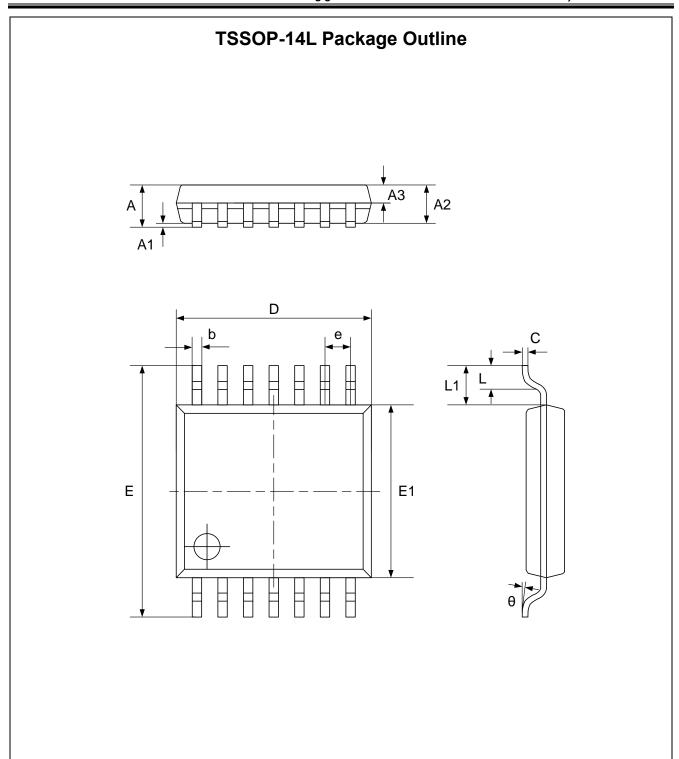

1. Refer to the Table 3. SOIC-14L dimensions.

Table 3. SOIC-14L dimensions

SYMBOL	MIN	TYP	MAX
A	1.450		1.850
A1	0.100		0.300
A2	1.350		1.550
A3	0.550		0.750
b		0.406	
С		0.203	
D	8.630		8.830
Е	5.840		6.240
E1	3.850		4.050
е		1.270	
L1		1.040 REF	
L	0.350		0.750
θ	2°		8°

NOTES: (continued)

1. Refer to the Table 4. TSSOP-14L dimensions

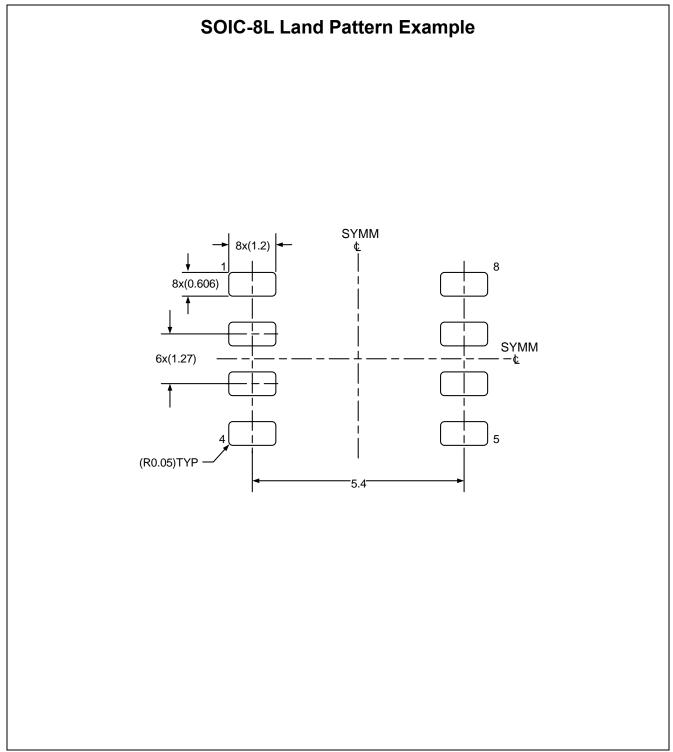
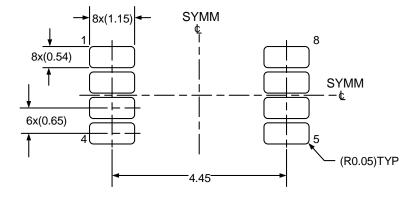


Table 4. TSSOP-14L dimensions

SYMBOL	MIN	TYP	MAX
A			1.200
A1	0.050		0.150
A2	0.900		1.050
A3	0.390		0.490
b	0.200		0.290
С	0.130		0.180
D	4.860		5.060
Е	6.200		6.600
E1	4.300		4.500
е		0.650	
L1		1.000 REF	
L	0.450		0.750
θ	0°		8°

6.2 Recommended Land Pattern



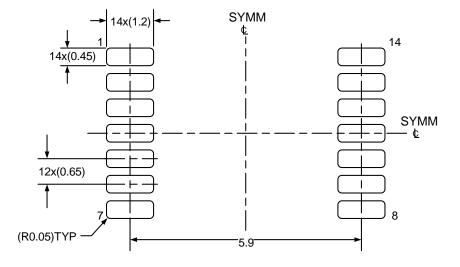
NOTES:

- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 10X scale.

MSOP-8L Land Pattern Example

NOTES: (continued)

- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 10X scale.


SOIC-14L Land Pattern Example SYMM 14x(1.2) 14 14x(0.606) SYMM 12x(1.27) (R0.05)TYP 5.4

NOTES: (continued)

- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 10X scale.

TSSOP-14L Land Pattern Example

NOTES: (continued)

- 1. Refer to the IPC-7351 can also help you complete the designs.
- 2. Exposed metal shown.
- 3. Drawing is 10X scale.

7 Ordering Information

Ordering Code	Package Type	ECO Plan	Packing Type	MOQ	OP Temp(°C)
GD30CP2903WMTR-IL2	MSOP-8L	Green	Tape & Reel	3000	-40°C to +125°C
GD30CP2903WLTR-IL2	SOIC-8L	Green	Tape & Reel	4000	-40°C to +125°C
GD30CP2901ZLTR-IL4	SOIC-14L	Green	Tape & Reel	2500	-40°C to +125°C
GD30CP2901ZPTR-IL4	TSSOP-14L	Green	Tape & Reel	3000	-40°C to +125°C

8 Revision History

REVISION NUMBER	DESCRIPTION	DATE
1.0	Initial release and device details	2024

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company according to the laws of the People's Republic of China and other applicable laws. The Company reserves all rights under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no representations or warranties of any kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor does the Company assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the sole responsibility of the user of this document to determine whether the Product is suitable and fit for its applications and products planned, and properly design, program, and test the functionality and safety of its applications and products planned using the Product. Unless otherwise expressly specified in the datasheet of the Product, the Product is designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities, atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments, pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems (including life support equipment and surgical implants); (iii) automotive applications or environments, including but not limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS, Domain, ESC, DCDC, e-clutch, advancedlighting, etc.. Automobile herein means a vehicle propelled by a self-contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses"). Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product. Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to make changes, corrections, modifications or improvements to this document and the Product described herein at any time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 GigaDevice - All rights reserved